Abstract

In 1988, Haagerup and Størmer conjectured that every pointwise inner automorphism of a type ${\rm III_1}$ factor is a composition of an inner and a modular automorphism. We study this conjecture and prove that every type ${\rm III_1}$ factor with trivial bicentralizer indeed satisfies this condition. In particular, this shows that Haagerup and Størmer's conjecture holds in full generality if Connes’ bicentralizer problem has an affirmative answer. Our proof is based on Popa's intertwining theory and Marrakchi's recent work on relative bicentralizers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.