Abstract

A unimolecular micelle was employed both as anchoring sites for palladium nanoparticles and micellar catalyst for Heck reaction in water. In this system, the catalyst and substrates are concentrated in nanosize sites and therefore an efficient catalytic reaction occurs. The hyperbranched aliphatic polyester H40 has been functionalized with poly(caprolactone) (PCL) as hydrophobic core and polyethylene glycol (PEG) chains to obtain a water-soluble H40-PCL-PEG polymer which exhibits unimolecular micellar properties. The H40-PCL-PEG was effectively employed as a substrate for in-situ generation of Pd nanoparticles and also as a micellar catalyst. 1H·NMR, FT-IR, atomic absorption spectrometry (AAS), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and transmission electron microscopy (TEM) were employed to characterize the synthesized catalyst. The application of palladium nanoparticles immobilized on H40-PCL-PEG (PdNPs@H40-PCL-PEG UMs) as an efficient nanocatalyst toward Heck reaction in different conditions was investigated. The catalyst were found to be very active in Heck reactions of aryl iodides, bromides and also chlorides with olefinic compounds in water at room temperature with short reaction time duration and high yields. The catalyst can be recycled several times by extraction, dialysis or ultracentrifuge methods without loss in activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.