Abstract
ABSTRACTHuman influenza viruses evade host immune responses by accumulating mutations around the receptor-binding region of the hemagglutinin (HA) protein, which is composed of three key elements, the 130-loop, the 190-helix, and the 220-loop. Here, we characterized two human H3N2 influenza viruses with 12- and 16-amino acid deletions around the HA receptor-binding site that were isolated after antigenic selection of mutated H3N2 viruses. Structural modeling suggested that the 12-amino acid deletion eliminated the 190-helix. The 16-amino acid deletion comprises two stretches of 11- and 5-amino acid deletions. As the result of a frameshift, “novel” amino acids (not found in wild-type HA at these positions) are encoded between the deleted regions. Interestingly, structural modeling predicted that the novel sequence forms a structure resembling the 190-helix. However, compared to wild-type HA, the 16-amino acid deletion mutant lacks two antiparallel beta-sheets that connect the 190-helix and the 220-loop in wild-type HA. Nonetheless, both HA deletion mutants replicated in mammalian cells, and the 16-amino acid deletion mutant (with a remodeled 190-helix) also replicated in Syrian hamsters, albeit at low titers. Wild-type virus bound preferentially to α2,6-linked sialic acids, whereas both mutants gained affinity for α2,3-linked sialic acids. Moreover, the 12- and 16-amino acid deletions may affect the antigenic properties of the viruses. Thus, viruses with sizeable deletions around the HA receptor-binding site are viable but may display altered sialic acid preferences, altered antigenic properties, and attenuated replicative ability in cultured cells and virulence in Syrian hamsters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.