Abstract

Histone methylations are generally considered to play an important role in multiple cancers by regulating cancer-related genes. This study aims to investigate the effects of H3K27me3-mediated inactivation of tumor suppressor gene SFRP1 and its function in esophageal squamous cell carcinoma (ESCC). We performed ChIP-seq on H3K27me3-enriched genomic DNA fragments in ESCC cells to screen out tumor suppressor genes that may be regulated by H3K27me3. ChIP-qPCR and Western blot were employed to explore the regulating mechanisms between H3K27me3 and SFRP1. Expression level of SFRP1 was assessed by quantitative real-time polymerase chain reaction (q-PCR) in 29 pairs of ESCC surgical samples. SFRP1 function in ESCC cells were detected by cell proliferation assay, colony formation assay and wound-healing assay. Our results indicated that H3K27me3 was widely distributed in the genome of ESCC cells. Specifically, we found that H3K27me3 deposited on the upstream region of SFRP1 promoter and inactivated SFRP1 expression. Furthermore, we found SFRP1 was significantly down-regulated in ESCC tissues compared with the adjacent non-tumor tissues, and SFRP1 expression was significantly associated with TNM stage and lymph node metastasis. In vitro cell-based assay indicated that over-expression of SFRP1 significantly suppressed cell proliferation and negatively correlated with the expression of β-catenin in the nucleus. Our study revealed a previously unrecognized finding that H3K27me3-mediated SFRP1 inhibit the cell proliferation of ESCC through inactivation of Wnt/β-catenin signaling pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.