Abstract

Drug resistance is a considerable obstacle to gastric cancer (GC) treatment. The current work aimed to elucidate the functional mechanism of CD109 in 5-fluorouracil (5-FU) resistance in GC. In this study, we demonstrated that CD109 was extremely heightened in 5-FU-resistant GC cells. CD109 deficiency lessened the IC50 value, impaired cell viability and metastatic capability, and induced cell apoptosis after 5-FU treatment in cells. In addition, we found that PAX5 bound p300 increased the enrichment of H3K27ac at the promoter region of the CD109 gene, which resulted in the upregulation of CD109 in GC. Moreover, we also revealed that CD109 triggered 5-FU resistance via activating the JNK/MAPK signaling. Blockage of JNK/MAPK signaling using JNK inhibitor, SP600125, abolished CD109 upregulation-induced changes of IC50 values, cell viability, metastasis and apoptosis in NCI-N87/5-FU and SNU-1/5-FU cells. Importantly, CD109 silencing enhanced the therapeutic efficacy of 5-FU, leading to reduced tumor growth in vivo. In conclusion, our results unveiled that H3K27 acetylation activated-CD109 enhanced 5-FU resistance of GC cells via modulating the JNK/MAPK signaling pathway, which might provide an attractive therapeutic target for GC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.