Abstract

ObjectivesCalcium oxalate (CaOx) crystals can activate inflammatory cytokines by triggering inflammasomes, which cause damage to the adhered epithelium, a dysfunctional microenvironment and even renal failure. However, a comprehensive and in‐depth understanding of the mechanisms underlying the effects of these crystals on damage and cytokine function in renal tubular epithelial cells (TECs) remains limited and to be explored.Materials and MethodsWe detected the pyroptosis of TECs induced after exposure to CaOx crystals and demonstrated the significance of cytokine activation in the subsequent inflammatory processes through a proteomic study. We then conducted animal and cell experiments to verify relevant mechanisms through morphological, protein, histological and biochemical approaches. Human serum samples were further tested to help explain the pathophysiological mechanism of H3 relaxin.ResultsWe verified that crystal‐induced extracellular adenosine triphosphate (ATP) upregulation via the membrane purinergic 2X7 receptor (P2X7R) promotes ROS generation and thereby activates NLRP3 inflammasome‐mediated interleukin‐1β/18 maturation and gasdermin D cleavage. Human recombinant relaxin‐3 (H3 relaxin) can act on the transmembrane receptor RXFP1 to produce cAMP and subsequently improves crystal‐derived damage via ATP consumption. Additionally, endogenous relaxin‐3 was found to be elevated in patients with renal calculus and can thus serve as a biomarker.ConclusionsOur results provide previously unidentified mechanistic insights into CaOx crystal‐induced inflammatory pyroptotic damage and H3 relaxin‐mediated anti‐inflammatory protection and thus suggest a series of potential therapeutic targets and methods for but not limited to nephrocalcinosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call