Abstract

Targeted antibiotic delivery system would be an ideal solution for the treatment of enteropathogenic infections since it avoids the excessive usage of antibiotics clinically, which may lead to threat on public health and food safety. Salmonella spp. are Enteropathogens, but they are also robust H2S producers in the intestinal tracts of hosts. To this end, the PEGylated poly (α lipoic acid) (PEG-PALA) copolymer nanoparticles with hydrophilic exterior and hydrophobic interior were designated in this study to encapsulate the antibiotics and release them in response to H2S produced by Salmonella spp. The PEG-PALA nanoparticles demonstrated excellent stability in vitro and biocompatibility toward mammalian Caco-2 and 293T cells. The release of ciprofloxacin from PEG-PALA nanoparticle was only 25.44±0.57% and 26.98±1.93% (w/w) in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) solutions without H2S stimulation. However, the release amounts of ciprofloxacin were up to 73.68±1.63% (w/w) in the presence of 1mM Na2S as H2S source. In the mouse infection model, PEG-PALA nanoparticles encapsulated with ciprofloxacin (PEG-PALA@CIP) reduced the Salmonella colonization in the heart, liver, spleen, lung, cecum, and faeces, prolonged ciprofloxacin persistence in the intestine while reducing its absorption into the blood. More importantly, these nanoparticles reduced 3.4-fold of Enterobacteriaceae levels and increased 1.5-fold of the Lactobacillaceae levels compared with the drug administered in the free form. Moreover, these nanoparticles resulted in only minimal signs of intestinal tract inflammation. The H2S-responsive antibiotic delivery systems reported in this study demonstrating a variety of advantages including protected the drug from deactivation by gastric and intestinal fluids, maintained a high concentration in the intestinal tract and maximally kept the gut microbiota homeostasis. As such, this targeted antibiotic delivery systems are for the encapsulation of antibiotics to target specific enteropathogens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call