Abstract
Surface acoustic wave and chemiresistor based gas sensors integrated with a sensing layer of sol-gel CuO-Al2O3 composite film were fabricated and their performance and mechanisms for H2S sensing were characterized and compared. In the composite film, CuO nanoparticles provide active sites for adsorption and reaction of H2S molecules while Al2O3 nanoparticles help to form a uniform and mesoporous film structure, both of which enhance the sensitivity of the sensors by providing numerous active CuO surfaces. Through the comparative studies, the SAW based H2S sensor operated at room temperature showed a lower detection limit, higher sensitivity, better linearity and good selectivity to H2S gas with its concentration ranging from 5 ppb to 100 ppm, compared with those of the chemiresistor sensor, which are mainly attributed to the effective mass sensing properties of the SAW sensor, because a minor change in the mass of the film caused by adsorbed H2S molecules would lead to a significant and monotonous change of the resonant frequency of the SAW devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.