Abstract

Hepatic blood supply is uniquely regulated by the hepatic arterial buffer response (HABR), counteracting alterations of portal venous blood flow by flow changes of the hepatic artery. Hydrogen sulfide (H(2)S) has been recognized as a novel signaling molecule with vasoactive properties. However, the contribution of H(2)S in mediating the HABR is not yet studied. In pentobarbital-anesthetized and laparotomized rats, flow probes around the portal vein and hepatic artery allowed for assessment of the portal venous (PVBF) and hepatic arterial blood flow (HABF) under baseline conditions and stepwise reduction of PVBF for induction of HABR. Animals received either the H(2)S donor Na(2)S, DL-propargylglycine as inhibitor of the H(2)S synthesizing enzyme cystathionine-gamma-lyase (CSE), or saline alone. Additionally, animals were treated with Na(2)S and the ATP-sensitive potassium channel (K(ATP)) inhibitor glibenclamide or with glibenclamide alone. Na(2)S markedly increased the buffer capacity to 27.4 +/- 3.0% (P < 0.05 vs. controls: 15.5 +/- 1.7%), whereas blockade of H(2)S formation by DL-propargylglycine significantly reduced the buffer capacity (8.5 +/- 1.4%). Glibenclamide completely reversed the H(2)S-induced increase of buffer capacity to the control level. By means of RT-PCR, Western blot analysis, and immunohistochemistry, we observed the expression of both H(2)S synthesizing enzymes (CSE and cystathionine-beta-synthase) in aorta, vena cava, hepatic artery, and portal vein, as well as in hepatic parenchymal tissue. Terminal branches of the hepatic afferent vessels expressed only CSE. We show for the first time that CSE-derived H(2)S contributes to HABR and partly mediates vasorelaxation of the hepatic artery via activation of K(ATP) channels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.