Abstract
The early (approximately 30 min) postexercise hypotension response after a session of aerobic exercise is due in part to H1-receptor-mediated vasodilation. The purpose of this study was to determine the potential contribution of H2-receptor-mediated vasodilation to postexercise hypotension. We studied 10 healthy normotensive men and women (ages 23.7 +/- 3.4 yr) before and through 90 min after a 60-min bout of cycling at 60% peak O2 uptake on randomized control and H2-receptor antagonist days (300 mg oral ranitidine). Arterial pressure (automated auscultation), cardiac output (acetylene washin) and femoral blood flow (Doppler ultrasound) were measured. Vascular conductance was calculated as flow/mean arterial pressure. Sixty minutes postexercise on the control day, femoral (delta62.3 +/- 15.6%, where Delta is change; P < 0.01) and systemic (delta13.8 +/- 5.3%; P = 0.01) vascular conductances were increased, whereas mean arterial pressure was reduced (Delta-6.7 +/- 1.1 mmHg; P < 0.01). Conversely, 60 min postexercise with ranitidine, femoral (delta9.4 +/- 9.2%; P = 0.34) and systemic (delta-2.8 +/- 4.8%; P = 0.35) vascular conductances were not elevated and mean arterial pressure was not reduced (delta-2.2 +/- 1.3 mmHg; P = 0.12). Furthermore, postexercise femoral and systemic vascular conductances were lower (P < 0.05) and mean arterial pressure was higher (P = 0.01) on the ranitidine day compared with control. Ingestion of ranitidine markedly reduces vasodilation after exercise and blunts postexercise hypotension, suggesting H2-receptor-mediated vasodilation contributes to postexercise hypotension.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.