Abstract

Dense kernel matrices represented in H 2 matrix format typically require less storage and have faster matrix-vector multiplications than when these matrices are represented in the standard dense format. In this article, we present H2Pack, a high-performance, shared-memory library for constructing and operating with H 2 matrix representations for kernel matrices defined by non-oscillatory, translationally invariant kernel functions. Using a hybrid analytic-algebraic compression method called the proxy point method, H2Pack can efficiently construct an H 2 matrix representation with linear computational complexity. Storage and matrix-vector multiplication also have linear complexity. H2Pack also introduces the concept of “partially admissible blocks” for H 2 matrices to make H 2 matrix-vector multiplication mathematically identical to the fast multipole method (FMM) if analytic expansions are used. We optimize H2Pack from both the algorithm and software perspectives. Compared to existing FMM libraries, H2Pack generally has much faster H 2 matrix-vector multiplications, since the proxy point method is more effective at producing block low-rank approximations than the analytic methods used in FMM. As a tradeoff, H 2 matrix construction in H2Pack is typically more expensive than the setup cost in FMM libraries. Thus, H2Pack is ideal for applications that need a large number of matrix-vector multiplications for a given configuration of data points.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.