Abstract

Previous work has shown that H2O2 causes an increase in polymerized actin (F-actin) inside cells. To test the hypothesis that increased polymerization resulted from a mechanism involving increased actin nucleation activity, we employed methods utilizing pyrene-labeled actin to quantify the actin nucleation activity of cell lysates and N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) (NBD)-phallacidin binding assays to quantify the amount of F-actin in P388D1 cells. H2O2 increased polymerized actin (NBD-phallacidin assay) in a dose-dependent manner with an effective dose giving 50% response (ED50) ≍ 1 mM. Five millimolar H2O2 caused a 1.6-fold increase in NBD-phallacidin staining. In contrast, actin nucleation activity decreased in a dose-dependent manner with a similar ED50. Five millimolar H2O2 caused a 30-40% decrease in actin nucleation activity. The effect was rapid, occurring within 5 min of H2O2 addition. The results indicate that H2O2 causes cytoskeletal changes that enhance NBD-phallacidin binding without increasing actin nucleation activity. Fractionation studies showed that the nucleation activity in H2O2-treated cells and controls sedimented with the Triton X-100-insoluble cytoskeleton, and the cytosolic fraction appeared to contain an inhibitor of actin polymerization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.