Abstract
AbstractHerein, we report the development of a robust, sensitive, and selective non‐enzymatic electrochemical sensor for the detection of hydrogen peroxide (H2O2). The novel BA modified CN‐dot wrapped Cu2O‐nano‐frogspawn (FS@CN‐dot) sensor probe demonstrated a catalytic property towards H2O2 that allowed the highly sensitive electrochemical detection at a low reduction potential. The as prepared CN‐dot wrapped Cu2O hetero‐structured nanocomposite was analyzed using surface analysis methods to confirm the morphology, crystallinity, and oxidation states of various constituents and dopant elements. Further, the morphological analysis of the Cu2O nanoparticles revealed that the Cu2O retains frogspawns‐liked structure. Under the optimized experimental conditions, the sensor showed a wide dynamic range of H2O2 from 0.5 μM to 9 mM with a detection limit (LD) of 1.2±0.1 nM. The designed sensing probe showed good stability, high sensitivity, and selectivity even in the presence of potential interfering molecules. To check the reliability of the fabricated sensor in biomedical applications, the proposed sensing probe was successfully applied to monitor H2O2 in saliva of a gum‐diseased patient. To the best of our knowledge, this report is the first of its kind not only because of its novel construction style in terms of CN source, but also in terms of real sample applicability as well.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.