Abstract

The existence of organic micropollutants (OPMs) in water poses a considerable threat to the environment. A centralized approach towards pollutants abatement has dominated over the recent decades wherein heterogeneous Fenton-like based advanced oxidation processes can be a promising technology. The application of engineered nanomaterials offers more opportunities to enhance their catalyst properties. This study synthesizes a series of ultrathin two-dimensional (2D) Metal-organic frameworks (MOFs) nanosheets with tunable metal clusters. The formation of reactive oxygen species (•OH and 1O2) can be significantly boosted via transferring the adsorbed H2O2 onto the solid-liquid interface by systematically tuning the metal species. The Co-MOF nanosheets exhibited an ultrafast degradation kinetic for BPA with a rate of 2.23 min−1 (4.98 times higher than that of the bulk MOF) and TOF (turnover frequency) value of 9.99 min−1, which are observably greater than that of the existing materials reported to date. Density functional theory simulation and experimental results unravel the mechanism for ROS formation, which is strongly metal-depend. We further loaded the powder onto a flow-through poly (vinylidene fluoride) (PVDF) microfiltration membrane and observed that the representative OPMs could be rapidly degraded, indicating promising properties for practical application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call