Abstract

To estimate the amount of H2O stored at lower crustal levels after burial, we considered the pile of migmatitic paragneisses in the Variscan Ulten Zone as a case study area. We constructed a pseudosection in the system K2O-Na2O-CaO-FeO-MnO-MgO-Al2O3-SiO2-TiO2-H2O for an average paragneiss, a relevant prograde PT path (8.5 kbar, 600°C; 11.5 kbar, 750°C; 14.0 kbar, 1000°C) and H2O contents between 0 and 10 wt.%. Based on an assemblage of garnet + biotite + white mica + kyanite + 20–30 vol.% former melt (now represented mainly by leucosomes composed of plagioclase + quartz), a bulk H2O content of 3.2 ± 1.1 wt.% was estimated for a peak temperature ranging between 770 and 800°C. Before melting, somewhat less than 1.8 wt.% H2O was stored in minerals. Thus, a considerable amount of H2O must have either resided in pore spaces along grain boundaries or, much less likely, infiltrated the paragneisses from below. Evidently, significant quantities of H2O as a free phase may be stored in buried sialic crust, resulting in considerable melting of deep-seated rocks during continent–continent collision.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call