Abstract
ObjectivesInvestigation of DNA damage induced by CT x-rays in paediatric patients versus patient dose in a multicentre setting.MethodsFrom 51 paediatric patients (median age, 3.8 years) who underwent an abdomen or chest CT examination in one of the five participating radiology departments, blood samples were taken before and shortly after the examination. DNA damage was estimated by scoring γ-H2AX foci in peripheral blood T lymphocytes. Patient-specific organ and tissue doses were calculated with a validated Monte Carlo program. Individual lifetime attributable risks (LAR) for cancer incidence and mortality were estimated according to the BEIR VII risk models.ResultsDespite the low CT doses, a median increase of 0.13 γ-H2AX foci/cell was observed. Plotting the induced γ-H2AX foci versus blood dose indicated a low-dose hypersensitivity, supported also by an in vitro dose–response study. Differences in dose levels between radiology centres were reflected in differences in DNA damage. LAR of cancer mortality for the paediatric chest CT and abdomen CT cohort was 0.08 and 0.13 ‰ respectively.ConclusionCT x-rays induce DNA damage in paediatric patients even at low doses and the level of DNA damage is reduced by application of more effective CT dose reduction techniques and paediatric protocols.Key Points• CT induces a small, significant number of double-strand DNA breaks in children.• More effective CT dose reduction results in less DNA damage.• Risk estimates based on the LNT hypothesis may represent underestimates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.