Abstract

We recently described a novel H2E class II-transgenic model (A(-)E(+)) of experimental autoimmune thyroiditis (EAT) that permits disease induction with heterologous thyroglobulin (Tg), but unlike conventional susceptible strains, precludes self-reactivity to autologous mouse Tg. In transgenic E(+)B10 (A(+)E(+)) mice, the presence of endogenous H2A genes is protective against H2E-mediated thyroiditis, inhibiting EAT development. The suppressive effect of H2A genes on H2E-mediated thyroiditis mirrors previous reports of H2E suppression on H2A-mediated autoimmune diseases, including EAT. The mechanism of the reciprocal-suppressive effect between class II genes is unclear, although the involvement of regulatory T cells has been proposed. We have recently reported that CD4(+)CD25(+) regulatory T cells mediate peripheral tolerance induced with mouse Tg in CBA mice. To determine whether these cells play a role in our E(+)-transgenic model, we first confirmed the existence of CD4(+)CD25(+) T cells regulating thyroiditis in E(+)B10.Ab(0) (A(-)E(+)) and B10 (A(+)E(-)) mice by i.v. administration of CD25 mAb before EAT induction. The depletion of CD4(+)CD25(+) T cells enhanced thyroiditis induction in the context of either H2E or H2A. Moreover, reconstitution of CD4(+)CD25(+) T cells from naive B10 mice restored resistance to EAT. E(+)B10 (A(+)E(+)) mice were also depleted of CD4(+)CD25(+) T cells before the challenge to determine their role in thyroiditis in the presence of both H2A and H2E genes. Depletion of CD4(+)CD25(+) regulatory T cells offset the suppression of H2E-mediated thyroiditis by H2A. Thus, these regulatory T cells may be involved in the reciprocal-suppressive effect between class II genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.