Abstract

In this work a series of commercial carbons with different structural and textural properties were characterised and evaluated for their application in hydrogen storage. The results showed that temperature has a greater influence on the storage capacity of carbons than pressure. The highest H2 storage capacity at 298 K and 90 bar was 0.5 wt%, while at 77 K and atmospheric pressure it was 2.9 wt%. It is also showed that, in order to predict the hydrogen storage capacity of carbon material both at cryogenic and ambient temperature, the only use of BET surface area or total micropore volume obtained from N2 adsorption isotherm may be insufficient, the characterization of the narrow microporosity is needed due to its high contribution to hydrogen adsorption capacity. The process involved in hydrogen storage in pure carbon materials seems to be physisorption. Morphological or structural characteristics have no influence, at least on gravimetric storage capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.