Abstract
Age-related macular degeneration (AMD) is one of the leading causes of blindness in elderly individuals worldwide. Oxidative stress injury to retinal pigment epithelial (RPE) cells plays a major role in the pathogenesis of AMD. The purpose of this study was to observe the correlation between Hepcidin and neovascular age-related macular degeneration (nAMD) and to further observe whether oxidative stress can inhibit Hepcidin expression through relevant signaling pathways to produce oxidative damage. We compared the concentrations of Hepcidin in the aqueous humor of nAMD patients and a control group and found that the concentration of Hepcidin was lower in nAMD patients. Through PCR and western blotting, we observed that H2 O2 can significantly inhibit the expression of Bone morphogenetic protein-6 (BMP-6) and Hepcidin and increase the intracellular iron concentration in RPE cells, while BMP-6 can reverse the inhibition of Hepcidin and the increase in iron concentration caused by H2 O2 . In addition, alterations in smad1 and smad5 expression were examined, and pretreatment with BMP-6 was demonstrated to reduce H2 O2 -induced activation of smad1 and smad5. The effects of BMP-6 were attenuated by smad1 and smad5 siRNA, further verifying that oxidative stress inhibits the expression of Hepcidin by inhibiting activation of the BMP/SMAD signaling pathway. To some extent, this study verified that oxidative stress injury plays a role in nAMD by affecting the level of hepcidin, which lays a foundation for exploring new methods to treat nAMD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.