Abstract

Neutral H2 formation via intramolecular hydrogen migration in hydrocarbon molecules plays a vital role in many chemical and biological processes. Here, employing cold target recoil ion momentum spectroscopy (COLTRIMS) and pump-probe technique, we find that the non-adiabatic coupling between the ground and excited ionic states of ethane through conical intersection leads to a significantly high yield of neutral H2 fragment. Based on the analysis of fingerprints that are sensitive to orbital symmetry and electronic state energies in the photoelectron momentum distributions, we tag the initial electronic population of both the ground and excited ionic states and determine the branching ratios of H2 formation channel from those two states. Incorporating theoretical simulation, we established the timescale of the H2 formation to be ~1300 fs. We provide a comprehensive characterization of H2 formation in ionic states of ethane mediated by conical intersection and reveals the significance of non-adiabatic coupling dynamics in the intramolecular hydrogen migration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.