Abstract
MgO nanoparticles obtained by chemical vapour deposition (CVD) were exposed to H2 and subsequently to UV irradiation and/or molecular oxygen at room temperature. A combined IR/EPR study reveals the role of low coordinated surface sites and anion vacancies in the diverse reaction steps. The hydride groups emerging from the initial H2 chemisorption processes (heterolytic splitting) play an active role in the consecutive reactions. They provide the electrons which are required for the UV induced formation of surface colour centres and for the production of superoxide anions (redox reaction). Both the colour centres and the superoxide anions are EPR active. The hydroxy groups resulting from H2 chemisorption do not actively participate in the consecutive reactions. Together with the OH groups formed in the course of colour centre formation they rather play the role of an observer. They undergo specific electronic interactions with both the colour centre and the superoxide anion which are IR inactive (or IR inaccessible) surface species. They may, however, be observed by IR spectroscopy via the specifically influenced OH stretching vibrations. This proves the intimate interplay between IR and EPR spectroscopy as applied to the surface processes under investigation. As a result, two paths were found for the three consecutive surface reaction steps: H2 chemisorption, colour centre formation and superoxide anion formation. In the first one a single, well defined surface area element is involved, namely a low coordinated ion pair, the cation of which is a constituent of an anion vacancy. In the second path a diffusion controlled intermediate step has to be adopted in which the electron required for the colour centre is transported by an H atom travelling from a hydride group to a remote anion vacancy. In either case there is clear experimental evidence that the finally resulting superoxide anions are complexed by the colour centre cations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.