Abstract

The H2 physisorption on AgN (with N = 32, 108, 256, 500, and 864)/carbon nanotube (CNT; in armchair and zigzag structures with diameters between 0.54 and 2.98 nm) composites were studied by molecular dynamic simulation to investigate the effect of nanocluster size, diameter, and chirality of nanotube on the adsorption phenomena. The calculations indicate that the effects of nanocluster properties are more important than those of the nanotube, in such a way that increase of nanocluster size, decreases the H2 adsorption. Also, the diameter and chirality of CNTs have considerable influence on the adsorption phenomena. As the diameter of nanotube is increased, the amount of adsorption is decreased. Moreover, H2 molecules have more tendencies to those nanoclusters located on the armchair nanotubes than the zigzag ones. Another important result is the reversibility of H2 adsorption on these materials in which the structure of composite in vacuum and after reduction of H2 pressure to zero, is not changed, considerably.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.