Abstract

5-Aminolevulinic acid (ALA) acts to increase chlorophyll biosynthesis, photosynthesis, cold stress tolerance, and salt tolerance at low concentrations. We studied the effects of ALA on H2 15O translocation from the roots to the shoots of rice plants (Oryza sativa L. cv. Nipponbare) in real time by a positron-emitting tracer imaging system (PETIS). When the plant was treated with 10 μm ALA, the velocity of the H2 15O translocation from 2 to 12 min after absorption increased to 126, 137, 140% that of the control at 1.5, 2.5, and 3.5 h after ALA treatment, respectively. However, ALA did not affect the H2 15O translocation within 0.5 h of treatment. When the plant was treated with 0.1 mM ABA at 4 h after 10 μm ALA treatment, the velocity of the H2 15O translocation decreased at 0.5 h after ABA treatment. Those observations suggested ALA might be absorbed and transported to the guard cells within 1.5 h and functioned to expand the stomatal aperture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call