Abstract
Temporal lobe epilepsy (TLE) is the most common type of intractable epilepsy and is refractory to medications. However, the role and mechanism of H19 in regulating TLE remains largely undefined. Expression of H19 and miR-206 was detected using real-time quantitative PCR (RT-qPCR). Cell apoptosis, autophagy and inflammatory response were determined by flow cytometry, western blotting and enzyme-linked immunosorbent assay (ELISA). The interaction between H19 and miR-206 was predicted on the miRcode database and confirmed by luciferase reporter assay, RNA immunoprecipitation (RIP) and RNA pull-down. H19 was upregulated and miR-206 was downregulated in the rat hippocampus neurons after kainic acid (KA) treatment. Functionally, both H19 knockdown and miR-206 overexpression weakened KA-induced apoptosis, autophagy, inflammatory response, and oxidative stress in hippocampus neurons. Mechanically, the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway was activated by H19 knockdown and miR-206 was confirmed to be targeted and negatively regulated by H19. Moreover, downregulation of miR-206 could counteract the effects of H19 knockdown in KA-induced hippocampus neurons. Knockdown of H19 suppressed hippocampus neuronal apoptosis, autophagy and inflammatory response presumably through directly upregulating miR-206 and activating the PI3K/AKT signaling pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.