Abstract

BackgroundIncreasing studies have indicated that noncoding RNA (ncRNA)-mediated competing endogenous RNA (ceRNA) network serves as a significant role in cancer progression, but the underlying regulatory mechanisms of which in gastric cancer (GC) remain largely unclear.MethodsBased on Gene Expression Omnibus and The Cancer Genome Atlas datasets, potential biomarkers for GC were screened and validated by machine learning. Then, upstream regulatory ncRNA of potential biomarkers was identified to construct a novel ceRNA network in GC through means of stepwise reverse prediction and validation. Ultimately, tumor immune cell infiltration analysis was performed based on the EPIC algorithm.ResultsA total of 188 differentially expressed genes (DEGs) were screened, and three candidate diagnostic biomarkers (FAP, PSAPL1, and SERPINH1) for GC were identified and validated. Subsequently, H19 and miR-378a-5p were identified as upstream regulatory ncRNAs that could potentially bind SERPINH1 in GC. Moreover, Immune infiltration analysis revealed that each component in the ceRNA network (H19/miR-378a-5p/SERPINH1) was significantly correlated with the infiltration abundances of diverse tumor-infiltrating immune cells.ConclusionsH19 may regulate the immune cell infiltration in carcinogenesis of GC through miR-378a-5p/SERPINH1 signaling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call