Abstract

H1 histone subtype genes differ in their expression patterns during the different stages of the cell cycle interphase. While the group of replication-dependent H1 histone subtypes is synthesized during S phase, the replacement histone subtype H1.0 is also expressed replication-independently in non-proliferating cells. The present study is the first report about the analysis of the cell cycle-dependent expression of all five replication-dependent H1 subtypes, the replacement histone H1.0 and the ubiquitously expressed subtype H1x. The expression of these H1 histone subtypes in HeLa cells was analysed on mRNA level by quantitative real-time RT-PCR as well as on protein level by immunoblotting. We found that after arrest of HeLa cells in G1 phase by treatment with sodium butyrate, the mRNA levels of all replication-dependently expressed H1 subtypes decreased, but to very different extent. During S phase the individual replication-dependently expressed H1 subtypes show similar kinetics regarding their mRNA levels. However, the variations in their protein amounts partially differ from the respective RNA levels which especially applies to histone H1.3. In contrast, the mRNA as well as the protein level of H1x remained nearly unchanged in G1 as well as during S phase progression. The results of the present study demonstrate that the cell cycle-dependent mRNA and protein expression of various H1 subtypes is differentially regulated, supporting the hypothesis of a functional heterogeneity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.