Abstract

We describe H ULLAC, an integrated code for calculating atomic structure and cross sections for collisional and radiative atomic processes. This code evolved and has been used over the years, but so far, there was no coherent, comprehensive, and in-depth presentation of it. It is based on relativistic quantum mechanical calculations including configuration interaction. The collisional cross sections are calculated in the distorted wave approximation. The theory and code are presented, emphasizing the various novel methods that has been developed to obtain accurate results very efficiently. In particular we describe the parametric potential method used for both bound and free orbitals, the factorization–interpolation method applied in the derivation of collisional rates, the phase amplitude approach for calculating the continuum orbitals and the N JGRAF graphical method used in the calculation of the angular momentum part of the matrix elements. Special effort has been made to insure the simplicity of use, which is demonstrated in an example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.