Abstract

This article investigates the H∞ stochastic tracking control problem for uncertain fuzzy Markovian hybrid switching systems by using a fuzzy switching dynamic adaptive control approach. The long and the short is to construct multiple piecewise stochastic Lyapunov functions which provide an effective tool for designing hybrid switching law and fuzzy switching dynamic adaptive law. A hybrid switching law, including both stochastic switching and deterministic switching, is designed to represent more general switching scenarios, which can improve the H∞ adaptive tracking performance through offering a running time before stochastic switching for the adaptive control strategy to work well. A fuzzy switching dynamic adaptive control technique is developed such that all signals of the tracking error equation are bounded, and the system state trajectory tracks the reference model state trajectory under a disturbance attenuation level as closely as possible. Finally, an application study verifies the effectiveness of the acquired methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.