Abstract

A new frequency domain approach to robust multi-input-multi-output (MIMO) linear filter design for sampled-data systems is presented. The system and noise models are assumed to be represented by polynomial forms that are not perfectly known except that they belong to a certain set. The optimal design guarantees that the error variance is kept below an upper bound that is minimized for all admissible uncertainties. The design problem is cast in the context of H/sub 2/ via the polynomial matrix representation of systems with norm bounded unstructured uncertainties. The sampled-data mix of continuous and discrete time systems is handled by means of a lifting technique; however, it does not increase the dimensionality or alter the computational cost of the solution. The setup adopted allows dealing with several filtering problems. A simple deconvolution example illustrates the procedure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.