Abstract

This article deals with H∞ state estimation of neural networks with mixed delays. In order to make full use of delay information, novel delay-product Lyapunov-Krasovskii functional (LKF) by using parameterized delay interval is first constructed. Then, generalized free-weighting-matrix integral inequality is used to estimate the derivative of LKF to reduce the conservatism. Also, a more general activation function is further applied by combining with parameterized delay interval in order to obtain a more accurate estimator model. Finally, sufficient conditions are derived to confirm that the estimation error system is asymptotically stable with a prescribed H∞ performance. Numerical examples are simulated to show the benefits of our proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.