Abstract
A critical analysis of the known theories of functioning of H+-selective electrodes (H+-SEs) based on neutral amine-type carriers is given. A model of specific ion association is proposed, according to which, in membranes plasticized with 2-nitrophenyloctyl ether, the protonated ionophore and cation-exchanger form much stronger ion pairs with inorganic ions extracted from the sample solution than with each other, and simple equations that describe the lower and upper limit detection (pHUDL and pHLDL) are obtained. A feasible and reliable method for quantifying the pKa values of ionophores in the membrane phase from potentiometric data is substantiated. The efficiency of using single-ion partition coefficients and ion pair formation constants for a priori quantitative description of the H+-SE response in solutions of various compositions has been demonstrated for the first time. It is shown that the width of the dynamic response range of such electrodes depends on the nature of the tertiary amino group, and the reasons for the observed effect are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.