Abstract

Abstract We present the results of a high-cadence spectroscopic and imaging monitoring campaign of the active galactic nucleus (AGN) of NGC 4395. High signal-to-noise-ratio spectra were obtained at the Gemini-N 8 m telescope using the GMOS integral field spectrograph (IFS) on 2019 March 7 and at the Keck I 10 m telescope using the Low-Resolution Imaging Spectrometer with slit masks on 2019 March 3 and April 2. Photometric data were obtained with a number of 1 m-class telescopes during the same nights. The narrow-line region (NLR) is spatially resolved; therefore, its variable contributions to the slit spectra make the standard procedure of relative flux calibration impractical. We demonstrate that spatially resolved data from the IFS can be effectively used to correct the slit-mask spectral light curves. While we obtained no reliable lag owing to the lack of a strong variability pattern in the light curves, we constrain the broad-line time lag to be less than 3 hr, consistent with the photometric lag of ∼80 minutes reported by Woo et al. By exploiting the high-quality spectra, we measure the second moment of the broad component of the Hα emission line to be 586 ± 19 km s−1, superseding the lower value reported by Woo et al. Combining the revised line dispersion and the photometric time lag, we update the black hole mass to (1.7 ± 0.3) × 104 M ⊙.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call