Abstract

In this paper we discuss the binding energy of the H-particle using a chiral quark model, where pion exchange plays an important role to reproduce the mass difference between the nucleon and Δ resonance. Since the main source for the bound H-particle is believed to be the color magnetic interaction, which gives the nucleon and Δ mass difference, it is very interesting to investigate whether the chiral quark model gives rise to the bound H-particle or not. We employ an extended resonating group method in order to take into account the possibility of a change of baryon wave functions when two baryons interact with each other. We found that a change of baryon size together with the Hamiltonian which consists of gluon, pseudoscalar meson and sigma meson exchange potentials gives rise to the bound H-particle. The binding energy is found to be about 25 MeV in a hybrid chiral quark model. Differences between the ordinary gluon dominant model and chiral quark models are also investigated. It is found that a pure chiral model has no bound state when the widely used sigma-quark coupling strength is employed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.