Abstract
The (continuous) finite element approximations of different orders for the computation of the solution to electronic structures was proposed in some papers and the performance of these approaches is becoming appreciable and is now well understood. In this publication, the author proposes to extend this discretization for full-potential electronic structure calculations by combining the refinement of the finite element mesh, where the solution is most singular with the increase of the degree of the polynomial approximations in the regions where the solution is mostly regular. This combination of increase of approximation properties, done in an a priori or a posteriori manner, is well-known to generally produce an optimal exponential type convergence rate with respect to the number of degrees of freedom even when the solution is singular. The analysis performed here sustains this property in the case of Hartree-Fock and Kohn-Sham problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.