Abstract
This paper focuses on the H∞ output feedback control problem of linear time-invariant fractional-order systems over finite frequency range. Based on the generalized Kalman-Yakubovic-Popov (KYP) Lemma and a key projection lemma, a necessary and sufficient condition is established to ensure the existence of the H∞ output feedback controller over finite frequency range, a desirable property in control engineering practice. By using the matrix congruence transformation, the feedback control gain matrix is decoupled and further parameterized by a scalar matrix. Two iterative linear matrix inequality algorithms are developed to solve this problem. Finally, numerical examples are provided to illustrate the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.