Abstract

This work deals with the optimization of fluid viscous damper systems (FVDs) to reduce the resonant dynamic structural response of high-speed railway bridges by algebraic and numerical approaches. The presented method chooses the objective function based on the H ∞ norm over the frequency band of interest. This function allows taking into account structural damping properties and minimizing simultaneously the structural response associated with multiple modes. Especially, the proposed objective function may also be extended to nonlinear problems to determine optimal parameters of nonlinear fluid viscous dampers which may be an interesting solution in applications where high force levels are expected in the dampers. Finally, the proposed method is validated through numerical simulations. The simulation results show that the optimal FVD coefficients obtained by using the presented method are more exact than those by the previous method. Besides, the effectiveness of the method for solving the problems with the contribution of high modes and the consideration of nonlinear FVDs is also proved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.