Abstract

In this paper, we propose a novel Maxwell dynamic vibration absorber (DVA) with lever, inerter, and grounded stiffness. Firstly, the governing equation of the coupled system is established. The analytical formula of the amplitude amplification factor of the primary system and the natural frequencies of the coupled system are derived. There are three fixed points in the amplitude–frequency response curve of the primary system, which are independent of damping. Then, based on H∞ optimization criterion, two possible optimal parameter designs of the proposed model are obtained. Considering the practical engineering application and ensuring the stability of the system, the optimal grounded stiffness ratio is selected, and six working ranges of inerter–mass ratio are calculated. Furthermore, the performance of the vibration reduction is compared for six cases. It is found that when the values of the mass ratio, lever amplification ratio, and inerter–mass ratio change in different intervals, and the optimal grounded stiffness ratio has different cases of negative, zero, and positive results. Especially when the stiffness coefficient of the viscoelastic Maxwell model and another grounded stiffness are positive at the same time, the vibration absorption effect is better theoretically. Finally, comparing with the traditional DVAs, the performance of the novel DVA is better under harmonic excitation and random excitation. The results could provide theoretical guidance for the design of inerter-based Maxwell-type DVA with a lever component.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.