Abstract
AbstractThis article investigates the ‐optimal estimation problem of a class of linear system with delays in states, disturbance input, and outputs. The estimator uses an extended Luenberger estimator format which estimates both the present and history states. The estimator is designed using an equivalent Partial Integral Equation (PIE) representation of the coupled nominal system. The advantage of the resulting PIE representation is compact and delay free—obviating the need for commonly used bounding technique such as integral inequalities which typically introduces conservatism into the resulting optimization problem. The ‐optimal estimator synthesis problem is then reformulated as a Linear Partial Inequality (LPI)—a form of convex optimization using operator variables and inequlities. Such LPI‐based optimization problems can be solved using semidefinite programming via the PIETOOLS toolbox in Matlab. Compared with previous work, the proposed method simplifies the analysis and computation process and resulting in observers which are non‐conservtism to 4 decimal places when compared with Pad‐based ODE observer design methodologies. Numerical examples and simulation results are given to illustrate the effectiveness and scalability of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Robust and Nonlinear Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.