Abstract

Edge parameters play a critical role in high confinement mode (H-mode) access, which is a key component of discharge optimization in present day toroidal confinement experiments and the design of next generation devices. Because the edge magnetic topology of a spherical torus (ST) differs from a conventional aspect ratio tokamak, H-modes in STs exhibit important differences compared with tokamaks. The dependence of the National Spherical Torus Experiment (NSTX) [C. Neumeyer et al., Fusion Eng. Des. 54, 275 (2001)] edge plasma on heating power, including the low confinement mode (L-mode) to H-mode (L-H) transition requirements and the occurrence of edge-localized modes (ELMs), and on divertor configuration is quantified. Comparisons between good L-modes and H-modes show greater differences in the ion channel than the electron channel. The threshold power for the H-mode transition in NSTX is generally above the predictions of a recent International Tokamak Experimental Reactor (ITER) [ITER Physics Basis Editors, Nucl. Fusion 39, 2175 (1999)] scaling. Correlations of transition and ELM phenomena with turbulent fluctuations revealed by gas puff imaging and reflectometry are observed. In both single-null and double-null divertor discharges, the density peaks off-axis, sometimes developing prominent “ears” which can be sustained for many energy confinement times, τE, in the absence of ELMs. A wide variety of ELM behavior is observed, and ELM characteristics depend on configuration and fueling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call