Abstract
This paper presents a study on a grid‐connected and islanded multiple distributed generation (DG) system for frequency and voltage regulation. The multiple DG system includes solar cells, wind turbine, fuel cell, and battery storage. The H‐infinity controller is used whose weighting parameters are optimized to minimize voltage and frequency deviation. The performance of the system is analyzed under different conditions for both grid‐connected and islanded modes of operation. In case of the load variations, the inner voltage and current loop react based on the H‐ infinity control strategies. The outer power loop uses the droop characteristic controller. The design is simulated using MATLAB/SIMULINK. The simulation results show that the multiple DG system can supply high‐quality power both in grid‐connected and islanded modes. Also, we show that the proposed control methodology will make the system to transit smoothly between the islanded mode and the grid‐connected mode. The results indicate that the frequency and voltage deviations meet the nominal values as per IEEE standard. © 2015 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEJ Transactions on Electrical and Electronic Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.