Abstract
<abstract><p>The H-infinity bipartite consensus problem is addressed for a class of linear multi-agent systems with external disturbance, where the positive and negative links are allowed in communication topology. A novel event-triggered communication scheme is presented to save limited network resources, which dependents on information from neighboring agents at event-triggered instants, the given event-triggered condition is detected only at discrete sampling times, thus Zeno behavior can be excluded, two types of event-triggered matrices have been introduced in our event-triggered communication scheme, which can further reduce the sampled-data transmission compared with some existed results. Considering the probabilistic actuator faults, the reliable controller is designed based on sampled-data, then a new distribution-based fault model is constructed by using coordinate transform. Some H-infinity bipartite consensus criteria can be derived by the Lyapunov stability theory and algebraic graph theory, at the same time, the feedback matrices and event-triggered matrices can be obtained by solving some linear matrix inequalities. Finally, a numerical example is employed to show the validity and advantage of the proposed transmission scheme.</p></abstract>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.