Abstract

AbstractThis paper focuses on diagnosing faults and disturbances in the polymer electrolyte membrane (PEM) fuel cell air‐feed system. The main objective is to design a robust filter, specifically of the type, to improve fault detection and attenuate perturbations. The norm is employed to assess the fault sensitivity performance of the detection process, while the norm guarantees the robustness of the proposed filter against disturbances. The approach utilized in this work is based on Lyapunov stability analysis, and the filter matrices are determined by solving a convex optimization problem formulated as linear matrix inequalities (LMIs). To illustrate the effectiveness of our results, a simulation is conducted under various disturbance and faulty scenarios. By integrating robust filtering techniques and addressing fault detection and disturbance attenuation, this study offers valuable insights for enhancing the performance and reliability of the PEM fuel cell air‐feed system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.