Abstract

The H ∞ filtering problem is studied for a class of network-based systems with random delay in discrete-time domain. A new model is proposed to describe the filtering system with random sensor-filter delay which may be longer than one sampling period. The random delay is modeled as a Markov chain and the resulting filtering error system is a Markovian switched system with random state delay. By using a properly constructed Lyapunov function and the state transform technique, sufficient conditions for the existence of the H ∞ filters are presented in terms of linear matrix inequalities. An optimization problem with LMIs constraints is formulated to design the H ∞ filter which guarantees that the filtering error system is mean-square exponentially stable with a prescribed decay rate and ensures an optimal H ∞ disturbance attenuation level. An illustrative example is given to demonstrate the effectiveness of the proposed results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.