Abstract
This article studies the H∞ control problem for single-machine infinite bus power systems with superconducting magnetic energy storage (SMES) via simultaneous design of generator excitation control and SMES control. In the control system design, the exciter dynamics and unknown external disturbances are considered for practical implementation in power systems. A new synthesis framework is proposed to address the robust control problem of power systems with SMES. First, from the energy perspective, the interconnection and damping assignment (IDA) approach is applied to improve the transient performance of power systems. Second, by introducing the idea of virtual control in the design process, the authors obtain the solution of a partial differential equation that is a crucial point and cannot be obtained by using the traditional IDA method. Third, in order to enhance the robustness of the closed-loop system, the authors study the H∞ control design that is challenging and difficult for power systems considering the above mentioned practical considerations. In addition, the authors use a novel equivalent generator model to avoid using unmeasurable infinite bus voltage. Simulation results also show the effectiveness and advantage of the proposed controller.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.