Abstract

The H ∞ control problem is investigated in this paper for a class of networked control systems (NCS) with time-varying delay and packet disordering. A new model is proposed to describe the packet disordering phenomenon and then converted into a parameter-uncertain system with multi-step delay. Based on the obtained system model, a sufficient condition for robust stability of the NCS is derived. Furthermore, an optimization problem with linear matrix inequalities (LMIs) constraints is formulated to design the state feedback H ∞ controller such that the closed-loop NCS is robust stable and has an optimal H ∞ disturbance attenuation level. Finally, two illustrative examples are given to demonstrate the effectiveness of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call