Abstract

For graphs G and H, an H-coloring of G is a function from the vertices of G to the vertices of H that preserves adjacency. H-colorings encode graph theory notions such as independent sets and proper colorings, and are a natural setting for the study of hard-constraint models in statistical physics.We study the set of H-colorings of the even discrete torus Zmd, the graph on vertex set {0,…,m−1}d (m even) with two strings adjacent if they differ by 1 (mod m) on one coordinate and agree on all others. This is a bipartite graph, with bipartition classes E and O. In the case m=2 the even discrete torus is the discrete hypercube or Hamming cube Qd, the usual nearest neighbor graph on {0,1}d.We obtain, for any H and fixed m, a structural characterization of the space of H-colorings of Zmd. We show that it may be partitioned into an exceptional subset of negligible size (as d grows) and a collection of subsets indexed by certain pairs (A,B)∈V(H)2, with each H-coloring in the subset indexed by (A,B) having all but a vanishing proportion of vertices from E mapped to vertices from A, and all but a vanishing proportion of vertices from O mapped to vertices from B. This implies a long-range correlation phenomenon for uniformly chosen H-colorings of Zmd with m fixed and d growing.The special pairs (A,B)∈V(H)2 are characterized by every vertex in A being adjacent to every vertex in B, and having |A||B| maximal subject to this condition. Our main technical result is an upper bound on the probability, for an arbitrary edge uv of Zmd, that in a uniformly chosen H-coloring f of Zmd the pair ({f(w):w∈Nu},{f(z):z∈Nv}) is not one of these special pairs (where N⋅ indicates neighborhood).Our proof proceeds through an analysis of the entropy of f, and extends an approach of Kahn, who had considered the case of m=2 and H a doubly infinite path. All our results generalize to a natural weighted model of H-colorings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call