Abstract

In this article, the problem of H∞ codesign for nonlinear control systems with unmatched uncertainties and adjustable parameters is investigated. The main purpose is to solve the adjustable parameters and H∞ controller simultaneously so that better robust control performance can be achieved. By introducing a bounded function and defining a special cost function, the problem of solving the Hamilton-Jacobi-Isaacs equation is transformed into an optimization problem with nonlinear inequality constraints. Based on the sum of squares technique, a novel policy iteration algorithm is proposed to solve the problem of the H∞ codesign. Moreover, one modified algorithm for optimizing the robust performance index is given. The convergence and the performance improvement of new iteration policy algorithms are proved. Simulation results are presented to demonstrate the effectiveness of the proposed algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.