Abstract

Several physicochemical properties of molecular ensembles can be modulated by controlling intermolecular interactions. The design and synthesis of π-conjugated rodlike molecules exposing groups that can undergo H-bondings was exploited to develop materials featuring tunable 2D self-assembly at surfaces, thermal stability, order in micrometer-thick films, and electrical characteristics in organic field-effect transistors (OFETs). As a model system, we have chosen phenylene–thiophene–thiophene–phenylene derivatives with side groups exposing either COOH or COOMe moieties. The structure and dynamics within monolayers at the solid–liquid interface was explored by in-situ scanning tunneling microscopy (STM) experiments. The thermal behavior of the materials was investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The order in micrometer-thick films was studied by grazing-incidence small-angle X-ray scattering (GISAXS), whereas the electrical characteristics of the different systems were studied when self-assembled in thin films in a bottom-gate and bottom-contact field-effect transistor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.