Abstract

FTIR spectroscopy has been used to reexplore the nonclassical behavior of ethylene oxide (EO) within the large cages of clathrate hydrates. In most of the spectroscopic studies of EO within the clathrate hydrate cages, the classical EO bands attributed to the C-O stretch mode of EO were misassigned. Therefore, the all-vapor sub-second approach to clathrate-hydrate formation combined with computational studies was used to reexamine spectroscopic characteristics of EO molecules in which they can be either in classical or nonclassical forms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.