Abstract

A theoretical analysis of the double proton transfer (PT) in a hydrogen-bonded N-heterocyclic base pair is presented. The calculated (time-dependent density functional theory) double PT barrier calculated for the concerted process of the 7-azaindole C(2h) dimer in the first excited singlet electronic state S(1) conforms well to the kinetic data and the photophysical evidence reported in this article. The calculated PT energy barrier of 4.8 kcal/mol height, and the corresponding zero point energy value, yield for the S(1) state an activation energy barrier of 0.3 kcal/mol. This finding implies that the double PT concerted process is almost barrierless, confirming previous experiments. Upon N-H deuteration of the 7-azaindole dimer, the theoretical excited-state activation energy for the double deuterium transfer is determined to be 1.4 kcal/mol, in agreement with experiment, which in low-temperature spectroscopy is shown to negate excited-state double-deuteron transfer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.